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Abstract
We present natural (invariant) definite and indefinite scalar products on the
N = 1 superspace which turns out to carry an inherent Hilbert–Krein
structure. We are motivated by supersymmetry in physics but prefer a general
mathematical framework.

PACS numbers: 02.20.−a, 11.30.Pb

1. Introduction

Supersymmetries generalize the notion of a Lie algebra to include algebraic systems whose
defining relations involve commutators as well as anticommutators. Denoting by Qα, Q̄α̇ the
odd (anticommuting) generators, physical considerations require that (see [1]) the operators
Qα, Q̄α̇ = (Qα)+ act in a bona fide Hilbert space H of states with positive definite metric.
Here (Qα)+ means the operator adjoint to Qα in H. From the commutation relations [1]

{Qα, Q̄α̇} = 2σ l
αα̇Pl

where σ l, l = 0, 1, 2, 3 are the Pauli matrices with σ 0 = −1 as in [1] and Pl is the momentum,
it follows that for any state � in H we have

‖Qα�‖2 + ‖Q̄α̇�‖2 = (�, {Qα, Q̄α̇}�) = 2σ l
αα̇(�, Pl�).

Summing over α = α̇ = 1, 2 and using tr σ 0 = −2, tr σ l = 0, l = 1, 2, 3 yields for the
Minkowski metric (−1, 1, 1, 1)

(�, P0�) > 0

i.e. in a supersymmetric theory the energy H = P0 is always positive. This positivity argument
does not require any detailed knowledge of the Hilbert space H which is an imperative of any
quantum theory. In this paper we present not only indefinite but also definite (invariant) inner
products on N = 1 superspace, which are defined on supersymmetric functions on the N = 1
superspace, and show that the inherent Hilbert space in supersymmetric theories appears in
conjunction with an indefinite (Krein) scalar product. Roughly speaking, each function on
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superspace can be decomposed in a chiral, antichiral and a transversal contribution. However,
it turns out that in order to obtain positivity of the scalar product the transversal contribution
has to be subtracted instead of adding it to the chiral/antichiral part.

Despite the previous positivity argument leading to the energy positivity which relies on
physical arguments, we prefer for this paper a general mathematical framework and even do
not explicitly assume supersymmetry. Comments on physics appear at the end of the paper.
We use the notation and conventions of [1] with the only difference that from now on σ 0, σ̄ 0

are the identity instead of minus identity (our notation coincides with [2]). In particular our
Minkowski metric ηlm is (−1, +1, +1, +1). The Fourier transform f̃ (p) of f (x) is defined
through

f (x) = 1

(2π)2

∫
eipxf̃ (p) dp

where px = plx
l = plη

lmxm.
We use the Weyl spinor formalism in the Van der Waerden notation as in the references

cited above although for our purposes 4-component spinors would be better suited (see [3]).
Working with Weyl spinors we have to assume for consistency reasons anticommutativity of
their components which in our case are regular (test) functions (or distributions). This will
be not the case at the point we define sesquilinear form (inner products) by integration on
superspace connecting to the usual L2-scalar product on functions. Certainly this is not a
serious problem as it is clear to the reader (see also section 3).

2. The supersymmetric functions

We restrict ourselves to the N = 1 superspace. We write the most general superspace (test)
function X = X(z) = X(x, θ, θ̄ ) as in [1, 2]

X(z) = X(x, θ, θ̄ )

= f (x) + θϕ(x) + θ̄ χ̄ (x) + θ2m(x) + θ̄2n(x)

+ θσ l θ̄vl(x) + θ2θ̄ λ̄(x) + θ̄2θψ(x) + θ2θ̄2d(x) (2.1)

where the coefficients are functions of x in Minkowski space of certain regularity which will
be specified below (by the end of the paper we will admit distributions too). For the time being
suppose that the coefficient functions are in the Schwartz space S of infinitely differentiable
(test) functions with faster than polynomial decrease at infinity. For the vector component v

we can write equivalently

θσ l θ̄vl = θαθ̄ α̇vαα̇

where

vαα̇ = σ l
αα̇vl, v

l = − 1
2 σ̄ lα̇αvαα̇

which is a consequence of the ‘second’ completeness equation

σ l

αβ̇
σ̄

γ̇ ρ

l = −2δρ
αδ

γ̇

β̇
.

Let us introduce the supersymmetric covariant (and invariant [1, 2]) derivatives D, D̄ with
spinorial components Dα,Dα, D̄α̇, D̄α̇ given by

Dα = ∂α + iσ l
αα̇ θ̄ α̇∂l (2.2)

Dα = εαβDβ = −∂α + iσ lα
α̇ θ̄ α̇∂l (2.3)
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D̄α̇ = −∂̄α̇ − iθασ l
αα̇∂l (2.4)

D̄α̇ = εα̇β̇ D̄β̇ = ∂̄ α̇ − iθασ lα̇
α ∂l. (2.5)

We accept on the way notation like

εαβσ l
βα̇ = σ lα

α̇

etc but in the end we come back to the canonical index positions σ l = (
σ l

αα̇

)
, σ̄ l = (σ̄ lα̇α).

Note that Dα does not contain the variable θ and D̄α̇ does not contain the variable θ̄ such
that we can write at the operatorial level:

D2 = DαDα = −(∂α∂α − 2i∂αα̇θ̄ α̇∂α + θ̄2�) (2.6)

D̄2 = D̄α̇D̄α̇ = −(∂̄α̇ ∂̄ α̇ + 2iθα∂αα̇∂̄ α̇ + θ2�) (2.7)

where

� = ηlm∂l∂m

is the d’alembertian, η is the Minkowski metric tensor and

∂αα̇ = σ l
αα̇∂l .

Here we used the ‘first’ completeness relation for the Pauli matrices σ, σ̄ :

Tr(σ lσ̄ m) = σ l

αβ̇
σ̄ mβ̇α = −2ηlm. (2.8)

We make use of the operators [1, 2]

c = D̄2D2, a = D2D̄2, T = DαD̄2Dα = D̄α̇D2D̄α̇ = −8� + 1
2 (c + a) (2.9)

which are used to construct formal projections

Pc = 1

16�c, Pa = 1

16�a, PT = − 1

8�T (2.10)

on chiral, antichiral and transversal supersymmetric functions. These operators are, at least for
the time being, formal because they contain the d’alembertian in the denominator. Problems
with the d’alembertian in (2.10) in the denominator will be explained later. Chiral, antichiral
and transversal functions are linear subspaces of general supersymmetric functions which are
defined by the conditions [1, 2]

D̄α̇X = 0, α̇ = 1, 2; DαX = 0, α = 1, 2; D2X = D̄2X = 0

respectively. It can be proven that these relations are formally equivalent to the relations

PcX = X, PaX = X, PT X = X

(we mean here that Pi, i = c, a, T are applicable to X and the relations above hold).
We have formally

P 2
i = Pi, PiPj = 0, i �= j ; i, j = c, a, T

and Pc + Pa + PT = 1. Accordingly each supersymmetric function can be formally
decomposed into a sum of a chiral, antichiral and transversal contribution (from a rigorous
point of view this statement may be wrong and has to be reconsidered because of the problems
with the d’alembertian in the denominator; fortunately we will not run into such difficulties as
this will be made clear later in the paper).

Let us specify the coefficient functions in (2.1) for the chiral, antichiral and transversal
supersymmetric functions.

For the chiral case Xc we have:
χ̄ = ψ = n = 0, vl = ∂l(if ) = i∂lf,

λ̄ = − i

2
∂lϕσ l = i

2
σ̄ l∂lϕ, d = 1

4
�f.

(2.11)

Here f, ϕ and m are arbitrary functions. For notation and relations see (2.23)–(2.27).
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For the antichiral Xa case:

ϕ = λ̄ = m = 0, vl = ∂l(−if ) = −i∂lf,

ψ = i

2
σ l∂lχ̄ = − i

2
∂lχ̄ σ̄ l, d = 1

4
�f.

(2.12)

Here f, χ̄ and n are arbitrary functions.
For the transversal case XT [2]:

m = n = 0, ∂lv
l = 0, λ̄ = i

2
∂lϕσ l = − i

2
σ̄ l∂lϕ,

ψ = i

2
∂lχ̄ σ̄ l = − i

2
σ l∂lχ̄ , d = −1

4
�f.

(2.13)

Here f, ϕ, χ̄ are arbitrary and v satisfies ∂lv
l = 0.

Later on we will need the θ2θ̄2 coefficients [X̄iXi](x1, x2) of the quadratic forms
X̄i(x1, θ, θ̄ )Xi(x2, θ, θ̄ ) for i = c, a, T where X0 = X is arbitrary supersymmetric. They
coincide with the Grassmann integrals∫

d2θ1 d2θ̄1 d2θ2 d2θ̄2X̄i(x1, θ1, θ̄1)δ
2(θ1 − θ2)δ

2(θ̄1 − θ̄2)Xi(x2, θ2, θ̄2) (2.14)

where δ2(θ1 − θ2) = (θ1 − θ2)
2, δ2(θ̄1 − θ̄2) = (θ̄1 − θ̄2)

2, d2θ = 1
2 dθ1 dθ2, d2θ̄ =

− 1
2 dθ̄ 1̄dθ̄ 2̄ and are listed below in the order of i = c, a, T :

[X̄cXc](x1, x2) = f̄ (x1)

(
1

4
�f (x2)

)
− ϕ̄(x1)

(
i

2
σ̄ l∂lϕ(x2)

)
+ m̄(x1)m(x2)

− 1

2
∂lf̄ (x1)∂lf (x2) −

(
− i

2
∂lϕ̄(x1)σ̄

l

)
ϕ(x2) +

(
1

4
�f̄ (x1)

)
f (x2) (2.15)

[X̄aXa](x1, x2) = f̄ (x1)

(
1

4
�f (x2)

)
− χ(x1)

(
i

2
σ l∂lχ̄(x2)

)
+ n̄(x1)n(x2)

− 1

2
∂lf̄ (x1)∂lf (x2) −

(
− i

2
∂lχ(x1)σ

l

)
χ̄ (x2) +

(
1

4
�f̄ (x1)

)
f (x2) (2.16)

[X̄T XT ](x1, x2) = f̄ (x1)

(
−1

4
�f (x2)

)
− ϕ̄(x1)

(
− i

2
σ̄ l∂lϕ(x2)

)

−
(

i

2
∂lϕ̄(x1)

)
σ̄ lϕ(x2) − 1

2
v̄l(x1)vl(x2) − χ(x1)

(
− i

2
σ l∂lχ̄(x2)

)

−
(

i

2
∂lχ(x1)σ

l

)
χ̄(x2) +

(
−1

4
(�f̄ (x1))f (x2)

)
(2.17)

where we have used relations quoted in (2.23)–(2.27). The conjugate X̄ is given in (2.34).
As a useful exercise let us put x1 = x2 in [X̄iXi](x1, x2), i = c, a, T and compute the

integral ∫
d4x[X̄iXi](x).

We want to make clear that this computation is done only for pedagogical reasons; we perform
it because we will need a similar computation in momentum space (!) at a later stage in this
paper. We integrate by parts and use the faster than polynomial decrease of the coefficient
functions and of their derivatives to obtain for the chiral case:∫

d4x[X̄cXc](x) =
∫

d4x f̄ (x)�f (x) −
∫

d4x ϕ̄(x)iσ̄ l∂lϕ(x) +
∫

d4x m̄(x)m(x). (2.18)
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For the antichiral case:∫
d4x[X̄aXa](x) =

∫
d4x f̄ (x)�f (x) −

∫
d4x χ(x)iσ l∂lχ̄(x) +

∫
d4x n̄(x)n(x). (2.19)

and for the transversal case:∫
d4x[X̄T XT ](x) = −1

2

∫
d4x f̄ (x)�f (x) +

∫
d4x ϕ̄(x)iσ̄ l∂lϕ(x)

+
∫

d4x χ(x)iσ l∂lχ̄(x) − 1

2

∫
d4x v̄l(x)vl(x). (2.20)

Certainly the best we can expect in our paper is to find a Hilbert space structure on
supersymmetric functions such that the decomposition formally suggested by Pc + Pa + PT = 1
is a direct orthogonal sum of chiral, antichiral and transversal functions, but this is definitely
not the case as will be clear soon. In this paper we are going to uncover the exact mathematical
structure of this decomposition in its several variants. This will be done by explicit
computations. We start computing the action of the operators Dα,Dα, D̄α̇, D̄α̇, D2, D̄2,

c, a, T on X. Usually in physics one does not need the results of all these elementary but
long computations in an explicit way and this is the reason they are not fully recorded in the
literature. It turns out that for our purposes we need at least some of them.

For a given X as in (2.1) the expressions DβX,Dγ X, D̄β̇X, D̄γ̇ X are easily computed but
are not given explicitly here because they are in fact not necessary in order to compute higher
covariant derivatives used in this paper (in order to compute higher derivatives we use (2.6)
and (2.7)).

We start by recording the results for D2, D̄2 applied on X:

D̄2X = −4n + θ(−4ψ − 2iσ l∂lχ̄) + θ2(−4d − 2i∂lv
l − �f ) + θσ l θ̄ (−4i∂ln)

+ θ2θ̄ (−2iσ̄ l∂lψ − �χ̄ ) + θ2θ̄2(−�n)

D2X = −4m + θ̄ (−4λ̄ − 2iσ̄ l∂lϕ) + θ̄2(−4d + 2i∂lv
l − �f ) + θσ l θ̄ (4i∂lm)

+ θ̄2θ(−2iσ l∂lλ̄ − �ϕ) + θ2θ̄2(−�m)

or in a more suggestive way taking into account the chirality/antichirality of D̄2X,D2X (see
(2.11), (2.12)):

D̄2X = −4n + θ(−4ψ − 2iσ l∂lχ̄) + θ2(−4d − 2i∂lv
l − �f ) + θσ l θ̄ (−4i∂ln)

+ θ2θ̄
(

1
2 iσ̄ l∂l

)
(−4ψ − 2iσ l∂lχ̄) + θ2θ̄2(−�n) (2.21)

D2X = −4m + θ̄ (−4λ̄ − 2iσ̄ l∂lϕ) + θ̄2(−4d + 2i∂lv
l − �f ) + θσ l θ̄ (4i∂lm)

+ θ̄2θ
(

1
2 iσ l∂l

)
(−4λ̄ − 2iσ̄ l∂lϕ) + θ2θ̄2(−�m). (2.22)

We have used the following notation and relations (see for instance the standard references
mentioned above):

(ψσ l)β̇ = ψασ l

αβ̇
, (σ lχ̄)β = σ l

βρ̇ χ̄
ρ̇ , (χ̄ σ̄ l)α = χ̄ρ̇ σ̄

lρ̇α, (σ̄ lψ)α̇ = σ̄ lα̇βψβ

(2.23)

with (σ lχ̄)α = −(χ̄ σ̄ l)α etc as well as

ψσ lχ̄ = ψασ l

αβ̇
χ̄ β̇ = −χ̄ σ̄ lψ = −χ̄α̇ σ̄ lα̇βψβ (2.24)

where σ̄ l
α̇β = σ l

βα̇ .
As far as the complex conjugation is concerned we have:

(ψσ l)∗α̇ = (σ lψ̄)α, (χ̄ σ̄ l)α∗ = (σ̄χ)α̇, (ψσ lχ̄)∗ = χσ lψ̄ (2.25)
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where ∗ is the complex conjugation defined such that

(ψα)∗ = ψ̄ α̇ (2.26)

(ψα)∗ = ψ̄ α̇. (2.27)

The unusual properties of the Grassmann derivative were taken into account; in particular
∂∗
α = −∂̄α̇ etc.

As expected D̄2X and D2X are chiral and antichiral functions respectively. We continue
with c = D̄2D2, a = D2D̄2:

cX = D̄2D2X = 16d − 8i∂lv
l + 4�f + θ(8�ϕ + 16iσ l∂lλ̄)

+ θ2(16�m) + θσ l θ̄ (16i∂ld + 8∂l∂mvm + 4i∂l�f )

+ θ2θ̄ (8�λ̄ + 4iσ̄ l∂l�ϕ) + θ2θ̄2(4�d − 2i∂l�vl + �2f ) (2.28)

aX = D2D̄2X = 16d + 8i∂lv
l + 4�f + θ̄ (8�χ̄ + 16iσ̄ l∂lψ)

+ θ̄2(16�n) + θσ l θ̄ (−16i∂ld + 8∂l∂mvm − 4i∂l�f )

+ θ̄2θ(8�ψ + 4iσ l∂l�χ̄ ) + θ2θ̄2(4�d + 2i∂l�vl + �2f ) (2.29)

and finally obtain T = −8� + 1
2 (c + a) applied on X as follows:

T X = 16d − 4�f + θ(−4�ϕ + 8iσ l∂lλ̄) + θ̄ (−4�χ̄ + 8iσ̄ l∂lψ)

+ θσ l θ̄ (8∂l∂
mvm − 8�vl) + θ2θ̄ (−4�λ̄ + 2iσ̄ l∂l�ϕ)

+ θ̄2θ(−4�ψ + 2iσ l∂l�χ̄ ) + θ2θ̄2(−4�d + �2f ) (2.30)

or

T X = 16d − 4�f + θ(−4�ϕ + 8iσ l∂lλ̄) + θ̄ (−4�χ̄ + 8iσ̄ l∂lψ)

+ θσ l θ̄ (8∂l∂
mvm − 8�vl) + θ2θ̄

(
− i

2
σ̄ l∂l

)
(−4�ϕ + 8iσ l∂lλ̄)

+ θ̄2θ

(
− i

2
σ l∂l

)
(−4�χ̄ + 8iσ̄ l∂lψ) + θ2θ̄2(−4�d + �2f ). (2.31)

Here we have used the relations

(σ∂)(σ̄ ∂) = (σ̄ ∂)(σ∂) = −�12×2 (2.32)

where we briefly write

σ∂ = σ l∂l, σ̄ ∂ = σ̄ l∂l . (2.33)

Relation (2.32) as well as relation (2.8) follows from

σ lσ̄ m + σmσ̄ l = −2ηlm12×2.

where 12×2 is the unit 2 × 2 matrix. Written in the spinor notation it reads

σ l
αα̇σ̄ mα̇β + σm

αα̇σ̄ lα̇β = −2ηlmδβ
α .

As expected D̄2D2X is chiral, D2D̄2X is antichiral and T X is transversal. The transversality
(2.13) of T X was put in evidence in (2.31).

In order to construct inner products in integral form we also need the conjugates
X̄, D̄2X,D2X, etc of X, D̄2X,D2X etc where the conjugation includes besides the usual
complex conjugation the Grassman conjugation too. We have

X̄ = X̄(x, θ, θ̄ )

= f̄ (x) + θχ(x) + θ̄ ϕ̄(x) + θ2n̄(x) + θ̄2m̄(x)

+ θσ l θ̄ v̄l(x) + θ2θ̄ ψ̄(x) + θ̄2θλ(x) + θ2θ̄2d̄(x) (2.34)
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where f̄ , χ, ϕ̄, etc are the complex conjugate functions to f, χ̄, ϕ, etc. Note that if X is chiral
then X̄ is antichiral and vice versa. If X is transversal then X̄ is transversal. Although not
absolutely necessary we record here other expressions too which can be used to give alternative
proofs of results to follow by making use of partial integration in superspace. They are (use
(χσ lψ̄)∗ = ψσ lχ̄ where ∗ is complex conjugation, which could also have been written as a
bar):

D̄2X = D2X̄ = −4n̄ + θ̄ (−4ψ̄ − 2iσ̄ l∂lχ) + θ̄2(−4d̄ + 2i∂lv̄
l − �f̄ )

+ θσ l θ̄ (4i∂ln̄) + θ̄2θ(−2iσ l∂lψ̄ − �χ) + θ2θ̄2(−�n̄) (2.35)

D2X = D̄2X̄ = −4m̄ + θ(−4λ − 2iσ l∂lϕ̄) + θ2(−4d̄ − 2i∂lv̄
l − �f̄ )

+ θσ l θ̄ (−4i∂lm̄) + θ2θ̄ (−2iσ̄ l∂lλ − �ϕ̄) + θ2θ̄2(−�m̄) (2.36)

or in a more suggestive way as chiral and antichiral functions respectively

D̄2X = −4n̄ + θ̄ η̄ + θ̄2(−4d̄ + 2i∂lv̄
l − �f̄ ) + θσ l θ̄ (4i∂ln̄) + θ2θ̄

(
i

2
σ l∂l

)
η̄ + θ2θ̄2(−�n̄)

(2.37)

D2X = −4m̄ + θξ + θ2(−4d̄ − 2i∂lv̄
l − �f̄ ) + θσ l θ̄ (4i∂lm̄) + θ2θ̄

(
i

2
σ̄ l∂l

)
ξ + θ2θ̄2(−�m̄)

(2.38)

where in (2.37) and (2.38) we have set

ξ = −4λ − 2iσ l∂lϕ̄, η̄ = −4ψ̄ − 2iσ̄ l∂lχ.

Further

cX = D̄2D2X = D̄2D2X̄ (2.39)

aX = D2D̄2X = D2D̄2X̄ (2.40)

and finally

T X = T̄ X̄ = T X̄ (2.41)

or

T X = 16d̄ − 4�f̄ + θξ + θ̄ η̄ + θσ l θ̄ (8∂l∂
mv̄m − 8�v̄l) + θ2θ̄

(
− i

2
σ̄ l∂l

)
ξ

+ θ̄2θ

(
− i

2
σ l∂l

)
η̄ + θ2θ̄2(−4�d̄ + �2f̄ ) (2.42)

where in (2.42):

ξ = −4�χ + 8iσ l∂lψ̄, η̄ = −4�ϕ̄ + 8iσ̄ l∂lλ.

We start to look for (invariant) supersymmetric kernel functions K(z1, z2) = K(x1, θ1,

θ̄1; x2, θ2, θ̄2) which formally induce inner products on supersymmetric functions by

(X1, X2) =
∫

d8z1 d8z2X̄1(z1)K(z1, z2)X2(z2) =
∫

X̄1KX2 (2.43)

where the bar on the rhs means conjugation (including Grassmann), zi = (xi, θi, θ̄i ) and
d8z = d4x d2θ d2θ̄ . On the rhs of the last equality we have used a sloppy but concise
notation of the integral under study. The simplest choice for K would be the identity kernel
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K(z1, z2) = k(z1 − z2) = δ2(θ1 − θ2)δ
2(θ̄1 − θ̄2)δ

4(x1 − x2) but it turns out that this choice is
not sound. We settle soon for more appropriate choices. Formally we have if K̄ = K:

(X1, X2) = (X̄2, X̄1)

where the bars include Grassmann conjugation. The action of K on X is defined formally as

YK(z1) = (KX)(z1) =
∫

d8z2 K(z1, z2)X(z2).

Note that the general dependence of K on z1, z2 we admit is not necessarily through the
difference z1 − z2. We assume that the coefficient functions of the supersymmetric functions
involved belong to the Schwartz function space S of infinitely differentiable rapidly decreasing
functions.

Now we are starting to induce positivity of the inner product by a proper choice of the
kernel K. By positivity in this section we mean non-negativity. The first candidate is

K(z1, z2) = K0(z1 − z2) = δ2(θ1 − θ2)δ
2(θ̄1 − θ̄2)D

+(x1 − x2) (2.44)

where δ2(θ1 − θ2) = (θ1 − θ2)
2, δ2(θ̄1 − θ̄2) = (θ̄1 − θ̄2)

2 are the supersymmetric δ-functions
and D+(x) is the Fourier transform of a positive Lorentz invariant measure dρ(p) supported
in the backward light cone V̄ −:

D+(x) = 1

(2π)2

∫
eipx dρ(p) (2.45)

which is of polynomial growth, i.e. there is an integer n such that∫
dρ(p)

(1 + |p|2)n < ∞ (2.46)

where |p| =
√

p2
0 + p2

1 + p2
2 + p2

3 . Here px is the ‘most positive’ Minkowski scalar product.
Usually (for instance in quantum field theory) the Minkowski scalar product is ‘most negative’
and as a consequence the measure dρ(p) is concentrated in the forward light cone V̄ +. The
special kernel K0 depends only on the difference z1 − z2. In order to understand the idea
behind this choice note first that for f and g functions of x in S the integral

(f, g) =
∫

d4x d4yf̄ (x)D+(x − y)g(y) (2.47)

where D+(x) is given by (2.45) induces a positive definite scalar product (certainly in order
to exclude zero vectors we have to require the support of f and g in momentum space in V̄ −

to be concentrated on the support of dρ(p) which is equivalent to factoring out zero vectors
and completion in (2.47)). Indeed the right-hand side of (2.47) equals in momentum space∫ ¯̃f (p)g̃(p) dρ(p) where f̃ is the Fourier transform of f given by f (x) = 1

(2π)2

∫
eipxf̃ (p) dp.

Note further that positivity is preserved if we multiply the measure dρ(p) by −p2 or for the
case of two-spinor functions f and g by σp or σ̄p. In configuration space it means that we can
accommodate the operators � and −iσ∂,−iσ̄ ∂ in the kernel of the integral without spelling
out the positivity (we have as usually 1

i ∂ = p).
It is clear that in spite of the positivity properties induced by the kernel D+ the scalar

product in (2.43) with kernel (2.44) cannot be positive definite in superspace for general
coefficient functions (for X1 = X2 = X) because the coefficient functions are mixed up in the
process of Grassmann integration in an uncontrolled way. Fortunately there are other kernels
deduced from K0 which do the job. In order to keep the technicalities aside for the moment let
us assume that the measure dρ(p), besides being of polynomial growth, satisfies the stronger
condition ∣∣∣∣

∫
1

p2

dρ(p)

(1 + |p|2)n
∣∣∣∣ < ∞ (2.48)

with the integer n appearing in (2.46).
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Certainly the condition above is relatively strong; it allows measures like dρ(p) =
θ(−p0)δ(p

2 + m2) dp with m > 0 but excludes the cases m = 0 (in physics the massive and
massless cases respectively). The case m = 0 will be studied at the end of this section.

We arrived at the level of explaining our message. For this we introduce besides K0(z1−z2)

three other kernels as follows,

Kc(z1, z2) = PcK0(z1 − z2) (2.49)

Ka(z1, z2) = PaK0(z1 − z2) (2.50)

KT (z1, z2) = −PT K0(z1 − z2) (2.51)

with actions

Yi(z1) = (KiX)(z1) =
∫

d8z2 Ki(z1, z2)X(z2).

In (2.49)–(2.51) the operators Pi are understood to act on the first variable z1 (see also
(2.52)–(2.57) to follow). Condition (2.48) makes the formal definition Y = ∫

KX (with
K replaced by one of the derived kernels Ki , i = c, a, T as written above) safe from
a rigorous point of view because it takes care of the d’alembertian in the denominators
introduced by the formal projections Pi , i = c, a, T . We will remove this condition soon
by slightly restricting the set of supersymmetric (test) functions but let us keep it for the
time being. Note that the projections destroy the translation invariance in the Grassmann
variables but not in the space coordinates. Because Pi, i = c, a, T contain Grassmann
variables and derivatives thereof we have to specify on which variables they act in K0(z1 −z2).
By convention let us define by D2

1K0(z1 − z2), D̄
2
1K0(z1 − z2), T1K0(z1 − z2) the action

of the operators D2 and D̄2, T on K0(z1 − z2) on the first variable respectively and by
D2

2K0(z1 − z2), D̄
2
2K0(z1 − z2), T2K0(z1 − z2) the action of these operators on the second

variable. If indices are not specified, we understand the action on the first variable.
It can be proven (for similar computations see for instance [2]) that

D2
1K0(z1 − z2) = D2

2K0(z1 − z2) (2.52)

D̄2
1K0(z1 − z2) = D̄2

2K0(z1 − z2) (2.53)

D2
1D̄

2
1K0(z1 − z2) = D̄2

2D
2
2K0(z1 − z2) (2.54)

D̄2
1D

2
1K0(z1 − z2) = D2

2D
2
2K0(z1 − z2) (2.55)

T1K0(z1 − z2) = T2K0(z1 − z2) (2.56)

T̄ 1K0(z1 − z2) = T̄ 2K0(z1 − z2) (2.57)

where in fact the relations (2.56), (2.57) coincide because T̄ = T . We have used[
D2

1,D
2
2

] = 0,
[
D̄2

1, D̄
2
2

] = 0.

Note the minus sign in front of PT in (2.51) which will be of utmost importance for us.
Because of it the kernels Ki , i = c, a, T do not sum up to K. This is at the heart of the matter,
while at the same time not too embarrassing. We will prove by direct computation that the
kernels Ki, i = c, a, T produce, each for itself, a positive definite scalar product in the space
of supersymmetric functions (at this stage we prove only nonnegativity; the problem of zero
vectors is pushed to section 3). Whereas this assertion is to be expected for Ki for i = c, a,
the minus sign in KT comes as a surprise. It will be the reason for the natural Krein (more
precisely Hilbert–Krein) structure of the N = 1 supersymmetry which we are going to uncover
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(first under the restrictive condition (2.48) on the measure). Denoting by (., .)i , i = 0, c, a, T

the inner products induced by the kernels Ki, i = 0, c, a, T :

(X1, X2)i =
∫

X̄1KiX2 (2.58)

we could compute them by brute force using expressions (2.28)–(2.30) but it is not easy to get
the positive definiteness of these inner products in the cases i = c, a, T . Alternatively we will
proceed as follows. Let us start with the cases i = c, a. We use (2.52)–(2.57) and integrate
by parts in superspace (see for instance [2]). This gives (in the sloppy integral notation) by
partial integration in superspace

(X1, X2)c =
∫

X̄1KcX2 =
∫

X̄1PcK0X2 =
(

D2
1X1,

1

16�D2
2X2

)
0

(2.59)

(X1, X2)a =
∫

X̄1KaX2 =
∫

X̄1PaK0X2 =
(

D̄2
1X1,

1

16�D̄2
2X2

)
0

(2.60)

where we have also used D2X = D̄2X̄, etc. The last equality follows from obvious ones
supplemented by iσ l∂lϕ̄ = (iσ l∂lϕ̄)∗ = −i∂lϕσ l = iσ̄ l∂lϕ, etc. In (2.59) D̄2 from Pc was
moved to X̄1, the remaining D2 (acting on K0 on the first variable) was transferred by (2.52) to
the second variable on K0, and then moved on X2 such that finally we get the last expression.
The same procedure was applied for (2.60). The d’alembertian in the denominator can be
absorbed in Fourier space in the measure dρ(p) which is supposed to satisfy condition (2.48).
Using the δ-function property in the Grassmann variables in K0 we see that for instance in the
antichiral case we get for X1 = X2 = X

(X,X)a =
∫

X̄KaX

=
∫

d4x1 d4x2[(D̄2X)(D̄2X)](x1, x2)
1

16�D+(x1 − x2) (2.61)

where [.], as before, gives the coefficient of the highest power in the Grassmann variables.
Note that D̄2X is chiral such that for [(D̄2X)(D̄2X)](x1, x2) we can apply (2.15). We

integrate by parts in the usual coordinates using the faster than polynomial decrease of the
involved functions and their derivatives and obtain in momentum space∫

X̄KaX =
∫

[f̃ c(p)f̃ c(p) + ϕ̃c(p)(σp)ϕ̃c + m̃c(p)m̃c(p))]

(
1

−p2

)
dρ(p) (2.62)

where fc, ϕc, mc are the coefficients of the chiral D̄2X given by (2.21). We have used the
translation invariance of D+(x) which enables us to read up the result in momentum space
from the computation conducting to (2.18) which was performed in coordinate space (this is
an unusual way to keep track of the δ-function in momentum space generated by translation
invariance which quickly gives the result).

From (2.62) we obtain by inspection the positivity of
∫
X̄KaX = (X, PaX)0. We

use the positivity of −p2, σp and σ̄p. The same argument works for the chiral integral∫
X̄KcX = (X, PcX)0.

Now we go over to the transversal integral
∫
X̄1KT X2. Here we cannot split the kernel in

a useful way as we did in the chiral and antichiral cases but the following similar procedure
can be applied.
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We write using P 2
T = PT , relation (2.56) and integration by parts in superspace

−(X1, X2)T = −
∫

X̄1KT X2 =
∫

X̄1PT K0X2 =
∫

X̄1P
2
T K0X2

= (PT X1, PT X2)0 = 1

64

(
1

�T X1,
1

�T X2

)
0

. (2.63)

Here, as in the antichiral case above, one of PT in P 2
T acting on the first variable was moved

to X̄1 and the second one was pushed through K0 (modulo changing the variable) to X2. In
(2.63) we take X1 = X2 = X, integrate the θ, θ̄ -variables and use for [(T X)(T X))(x1, x2)

expression (2.17). We can now use (2.20) by analogy in momentum space as above. Note
that by integration by parts we have enough derivatives in the numerator in order to cancel
one of the two inverse d’alembertians in (2.63). By (2.48) the second d’alembertian is
under control and the computation is safe. We propose to the reader to go this way in order to
explicitly convince himself that the integral − ∫

X̄1KT X2 = ∫
X̄1PT K0X2 (in contradistinction

to the chiral/antichiral case) is negative for X1 = X2! A hint is necessary. Indeed the
only contribution which has to be looked up beyond the chiral/antichiral case is the vector
contribution stemming from v-coefficients of the transversal supersymmetric function and this
produces a negative contribution. In fact the negativity of the transversal contribution rests
on the following property in momentum space. Let v(p) = (vl(p)) be a vector function (not
necessary real) such that plv

l(p) = 0. It means that the vector with components vl(p) is
orthogonal (in the Euclidean meaning) to the (real) vector pl . But the momentum vector p is
confined to the light cone (it must be in the support of dρ(p)) such that the vector function
v(p) must satisfy v̄l(p)vl(p) � 0. Moreover if dρ intersects the light cone p2 = 0 the equality
may be realized. We repeat here an old argument which was recognized in the frame of the
rigorous version of the Gupta–Bleuler quantization in physics [4, 5].

The last part of this section is dedicated to the more delicate question of abolishing
the unpleasant restrictive condition (2.48) such that we can include in our analysis, from a
physical point of view, the interesting ‘massless’ case. From the consideration above it is
clear that this is generally not possible. More precisely, if we want to retain the interpretation
of supersymmetric quantum fields as operator-valued (super)distributions, as this is the case
for the usual quantum fields [6] (an interpretation which we subscribe to), we are forced to
restrict the set of allowed test functions such that the d’alembertian in the denominator is
annihilated. Restricting the set of test functions in quantum field theory is not a problem and
is not at all new; it appeared a long time ago in the rigorous discussion of the Gupta–Bleuler
quantization [4, 5]. In order to motivate the restriction of super-test functions to follow let us
show, following [5], that the classical Gupta–Bleuler quantization as presented in the physical
literature is equivalent to a restriction of the set of usual test functions. Indeed the main point
of the Gupta–Bleuler method is the ‘subsidiary condition’

∂µv(−)
µ � = 0

on the annihilation part of ∂µvµ where v(x) = v = (vµ) is the massless vector field and
� = |�〉 are the states selected by the subsidiary condition to be the physical ones. From
the physical point of view this condition eliminates the scalar and the transversal ‘photons’
which tend to drive the metric into an indefinite one. Smearing with the test function
f (x) = f = (f µ) the vector field can be written as

v(f ) =
∫

vµ(x)f µ(x) dx
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whereas the annihilation part of the vector field has the following Fock space representation
in momentum space,

(v(−)(f )�)(n)
µ1,...,µn

(k1, . . . , kn) =
∫

d3k

k0
f̃ µ(k)�(n+1)

µ,µ1,...,µn
(k, k1, . . . , kn).

It is clear now that the (mathematical) restrictive divergence condition divf = 0 on the test
functions f on which the massless vector field v is defined is equivalent to the physical
subsidiary condition above. This follows from the basic rule of distribution theory which
enables us to transfer a differential operator (in this case the divergence) from a distribution to
the test function on which it is applied. Certainly the creation part of the vector field induces
states in the Fock space satisfying the divergence condition too.

Before going over to the supersymmetric case let us remark that besides manifest Lorentz
invariance the Gupta–Bleuler quantization of the vector field in the variant above hides a gauge
fixing which is exactly the Feynman gauge known from the path integral formalism with a
Stueckelberg Lagrangian. We can induce other gauges too (such as the Landau or the unitary
gauge) inside a (gentle) family of gauges by substituting f̃ µ(k) on the rhs of the Fock space
representation of v(−)(f ) by f̃ µ(k) − (1 − α)kµkνf̃

ν(k) with an arbitrary constant α. The
Feyman gauge corresponds to α = 1. Having defined a family of gauges one can discuss the
problem of the gauge invariance inside this family [5].

Now we come to the supersymmetric case. Suppose that the coefficient functions in (2.1)
satisfy the following restrictive conditions:

d(x) = �D(x) (2.64)

λ̄(x) = iσ̄ l∂l�(x) (2.65)

ψ(x) = iσ l∂lψ̄(x) (2.66)

v(x) = grad ρ(x) + ω(x), div ω(x) = 0 (2.67)

where D(x),�(x),�(x), ρ(x), ω(x) are arbitrary functions (in S). In the last equation
grad ρ = (∂lρ), div ω = ∂lω

l .
The functions ρ(x), ω(x) can be constructed as follows: let ρ be a solution of �ρ = div v

and let ω = v − grad ρ. Then v = grad ρ + ω with div ω = div v − �ρ = 0. The divergence
condition div v = 0 is equivalent to the wave equation �ρ = 0.

We claim that under these conditions the results above concerning the positivity in the
chiral/antichiral sectors and negativity in the transversal sector remain valid without the
restrictive condition (2.48) on the measure dρ. Conditions (2.64)–(2.67) produce the missing
d’alembertian in∫

X̄1KiX2, i = c, a, T (2.68)

such that condition (2.48) becomes superfluous. Indeed let us consider for example the chiral
case (with the antichiral kernel Ka). From (2.21) we see that the following expressions appear
in the integral (2.62):

(−4n̄)�(−4n)

(−4ψ̄ − 2iσ̄ l∂lχ)(iσ̄ n∂n)(−4ψ − 2iσm∂mχ̄)

(−4d̄ + 2i∂lv̄
l − �f̄ )(−4d − 2i∂mvm − �f ).

It is clear that under conditions (2.64)–(2.67) the missing d’alembertian in integral (2.60)
can be factorized such that condition (2.48) on the measure dρ is no longer needed. The
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result remains positive. Similar arguments work for the chiral and transversal cases. In the
transversal case the interference between ρ and ω in v̄lvl disappears (because div ω = 0) and
one can use (besides the positivity of the d’alembertian) again the Gupta–Bleuler argument
with div ω = 0.

An interesting point is to search for a physical interpretation of the restriction conditions
(2.64)–(2.67) on the (super) test functions. First let us remark that it is easy to motivate these
conditions from a technical point of view. Indeed considerations of the next section show that
in the massless case conditions (2.64)–(2.67) are necessary and sufficient in order to be able
to define the formal projections Pi, i = c, a, T as bona fide Hilbert space projection operators
although they contain the d’alembertian in the denominator. We will see in the next section
that these projections are even disjoint after factorizing the zero vectors. It means that the
restrictive conditions (2.64)–(2.67) make possible the decomposition of the (restricted) space
of (regular) supersymmetric functions into the chiral, antichiral and transversal sectors. Such
a decomposition is not possible (for m = 0) in general. In fact a similar situation also appears
in usual quantum field theory at the point one wants to look at the (quantum) massless vector
field as the massless limit of the massive vector field. This is a delicate limit which in fact does
not exist. It is related to the Wigner representation theory of the Poincaré group for the massive
and massless cases. But there is a way to enforce this limit by the ‘method of projections’ (for
some details see [7], pp 120–121). One introduces longitudinal and transversal projections
in the massive case. These projections contain the d’alembertian in the denominator (more
precisely the square root of it) and are mathematically not defined in the massless case. The
trick in order to define the massless limit (which in fact goes back to Wigner and Bargman) is
to do a double factorization of the test function space on which we decide to define our fields as
operator valued distributions. The first factorization is given by the divergence condition above
and the second one is a zero-vector factorization. In this way a Krein–Hilbert structure appears
in both cases, massive and massless, and is exactly the structure which is formally induced
in the process of the Gupta–Bleuler quantization by the subsidiary condition (in the frame of
the family of gauges mentioned above). The supersymmetric situation is analogue: the role
of the divergence condition is now played by a bunch of conditions given in (2.64)–(2.67)
and in fact we have found here the rigorous way to perform the method of projections in the
supersymmetric case (see [7] for formal considerations in which the authors are not disturbed
by the d’alembertian in the denominator; they have good reasons not to be). Certainly the
symmetry group is now the supersymmetric one and it is clear that we have touched here its
representation theory in the massive and massless cases. Usually the representation theory of
the super Poincaré group is performed by using the Clifford structure of the anticommuting
translations together with the usual (Abelian) small group in momentum space connected to
the usual translations. Considerations above suggest the existence of an alternative Wigner–
Makey representation theory of the super Poincaré group in which the (unitary, ireductible)
representations are semi-directly ‘induced’ from a (non-Abelian, supersymmetric) small group
related to both anticommuting and commuting translations. This idea is certainly not new and
it could be implemented by using either the usual or the ‘supersymmetric’ Fourier transform
(for some useful ideas see [8]); the fact that the supersymmetrization of the Fourier transform is
not necessary has been observed in computational work on supersymmetric Feyman integrals).

Before ending our motivation of relations (2.64)–(2.67) from a technical point of view,
let us ask ourselves: what else can we do in order to get rid of the unpleasant condition
(2.48)? An idea would be to follow the elegant C*-algebra track using the supersymmetric
positivity which we have put forward in this paper. This would apparently have the advantage
of considering interacting fields from the beginning but will run into known computational
weakness of the method. In our opinion the conditions (2.64)–(2.67) are both natural and
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reasonable enough in order to start at the level of the free fields going to the interacting theory
by an operatorial method of the Epstein–Glaser type [10]. They include the usual divergence
condition.

Let us come back to the physical interpretation of relations (2.64)–(2.67). On the
basis of the discussion above it is clear that they are related to the gauge invariance of
the supersymmetric vector field. Indeed they can be considered as a preamble which allows
us defining a ‘gentle’ family of supersymmetric gauges for the supersymmetric vector field.
This goes in analogy to the usual case in which the divergence condition can be interpreted as
above as a preamble for defining the α-dependent family of gauges induced in the Sueckelberg
formalism (Feynman gauge is one of them). It remains to describe explicitly this family
of gauges. Because in this discussion we are at the level of free fields the gauges under
considerations will be reflected in the corresponding propagators. Going formally from
propagators to two-point functions they will be reflected in the two-point functions too. On
the other hand, the two-point functions give full information on the inner product of the
corresponding Krein structure. It follows that giving a (gentle) family of inner products
together with the corresponding Krein structure allows us to specify a family of gauges.
Inside this family we can look for those gauges which are compatible with positivity and
produce finally what we want: gauges compatible with a (positive) Hilbert space structure.
The family of inner products generating the family of supersymmetric gauges will be given in
the next section.

A last remark: it can be shown that conditions (2.64)–(2.67) are equivalent to the
‘supersymmetric subsidiary conditions’

D2V (−)(z) = D̄2V (−)(z) = 0

in a properly defined supersymmetric Fock space [11] in perfect analogy to the usual Gupta–
Bleuler case which was shortly explained above. Here V = V (z) is the supersymmetric
massless vector field.

The problem of possible zero vectors for the non-negative inner products induced by the
kernels Ki, i = c, a, T will be discussed in the next section. For the moment note that there
are plenty of them in each sector from the adjacent ones. The ‘massless’ case in which the
measure is dρ(p) = θ(−p0)δ

2(p2) i.e. it is concentrated on the light cone deserves special
attention. By putting together the non-negative inner products (., .)i , i = c, a, T all zero
vectors simply disappear (see section 3). We will construct the natural unique supersymmetric
positive definite scalar product and obtain in the next section our rigorous Hilbert–Krein
decomposition of the set of supersymmetric functions where conditions (2.64)–(2.67) will
play a central role.

3. Hilbert–Krein superspace

In this section we present, on the basis of the results of section 2, the generic Krein structure of
supersymmetries. Let V be an inner product space with inner product 〈., .〉 and ω an operator on
V with ω2 = 1 (do not confuse this ω with the one in (2.67)). If (φ,ψ) = 〈φ,ωψ〉;φ,ψ ∈ V

is a (positive definite) scalar product on V then we say that V has a Krein structure. By
completing in the scalar product (., .) we obtain an associated Hilbert space structure (if (., .)

has zero vectors we have in addition to factorize them before completing). We obtain what
we call a Hilbert–Krein space (or Hilbert–Krein structure). Hilbert–Krein structures naturally
appear in gauge theories (including the well-understood case of electrodynamics; see for
instance the book [9]).
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Suppose condition (2.48) on the Lorentz invariant measure dρ(p) is satisfied and, as
always, X and Y are concentrated on its support. We decompose X = X1 + X2 + X3 where
X1 = Xc = PcX,X2 = Xa = PaX,X3 = XT = PT X. Then the simplest supersymmetric
Hilbert–Krein structure which emerges from the considerations of the preceding section is
given by

〈X, Y 〉 =
∫

d8z1 d8z2X̄
T (z1)K0(z1 − z2)Y (z2) (3.1)

in the notation

XT = (X1, X2, X3), Y =

Y1

Y2

YT


 , K0(z) = K0(z)I3.

Here I3 is the 3 × 3 identity matrix and XT is the transpose of X.
Now let

(X, Y ) = 〈X,ωY 〉 (3.2)

with

ω =

1 0 0

0 1 0
0 0 −1


 .

Certainly (., .) is positive definite on the basis of results obtained in section 2. It is clear that
although each inner product (., , )i has zero vectors this will no longer be the case for (3.2).

Although very general the scalar product (3.4) is obstructed by the (from the point of
view of applications) unnatural restriction (2.48) of the Lorentz invariant measure dρ. It holds
for the massive but fails for the massless case. Now the restrictions (2.62)–(2.67) on (test)
supersymmetric functions come into play. Indeed, under these conditions we can always
decompose a supersymmetric function into its chiral, antichiral and transversal parts and write
the indefinite as well as the definite scalar products (3.1) and (3.2). Note that in the massless
case there is an overlap between chiral/antichiral and transversal sectors which consists of
zero vectors and has to be factorized. From (2.11)–(2.13) it follows that a function X belongs
to this overlap if

X(z) = f (x) + θϕ(x) + θ̄ χ̄ (x) ± iθσl θ̄∂lf (x)

with

∂lϕσ l = σ l∂lχ̄ = 0, �f = 0.

The restrictive condition on the measure was transferred to a restrictive condition on (test)
functions, a procedure which is common for rigorous quantum gauge fields (see [5, 9]).
The Hilbert–Krein structure on supersymmetric functions subjected or not to the conditions
(2.64)–(2.67) is the main result of this paper.

We believe that it is justified to call standard Hilbert–Krein supersymmetric space the
space of supersymmetric functions with indefinite and (positive) definite inner products given
as above by

〈X, Y 〉 =
∫

X̄T K0Y, (X, Y ) = 〈X,ωY 〉. (3.3)

It is exactly the supersymmetric analogue of the relativistic Hilbert space used in quantum
field theory in order to produce the Fock space of the free theory [6].
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Let us remark that it is possible to generalize the inner products above to

(X, Y )ω = 〈X,ωY 〉
with

ω =

λc 0 0

0 λa 0
0 0 λT




where λi, i = c, a, T are constants. These inner products are generally indefinite. Let us
consider only ω with λc = λa = λ. The supersymmetric kernel associated with the inner
product (., .)ω is

(λ(Pc + Pa) + λT PT )K0(z1 − z2).

It can be looked at as the two-point function of a quantized free supersymmetric field (the
vector one). The corresponding formal propagators are[

λT

−� + m2
PT +

λ

−� + m2
(Pc + Pa)

]
k(z1 − z2)

where k(z) was given in section 2. If the conditions (2.64)–(2.67) are satisfied then we can
take the massless limit because the projections are well-defined operators for m = 0. We
recognize here the propagators of the vector field computed by path integral methods (with
a slightly different normalization of λ) given in [1] p 73. The family of gauges is given by
the (Stueckelberg type) parameters λ and λT . For λ = λT = −1 (and m = 0) we get the
usual propagator of the supersymmetric vector field. It is, as expected, not compatible with
positivity. For λ = 0, λT = −1 we get a unitary gauge compatible with positivity.

We pass now to some physical applications of the material discussed in this paper. As
a first application we mention here that the free chiral/antichiral supersymmetric quantum
field theory (i.e. the quantum field formally generated by the free part of the Wess–Zumino
Lagrangian) is characterized by the positive definite (at this stage only non-negative) two-point
function (

1
16D̄2D2 m

4 D̄2

m
4 D2 1

16D2D̄2

)
K0 (3.4)

where dρ(p) = θ(−p0)δ(p
2 + m2) dp with m > 0. The correspondence to the two-point

functions of the chiral � and antichiral �̄-quantum fields is indicated below,(
��̄ ��

�̄�̄ �̄�

)
∼

(
1

16 D̄2D2 m
4 D̄2

m
4 D2 1

16D2D̄2

)
K0. (3.5)

The proof of non-negativity of (3.4) is by computation [11]. The factorization of the zero
vectors in (3.4) can be made explicit by imposing the equations of motion D̄2� = 4m�,

D2� = 4m�̄ on the test functions [11].
The supersymmetric vacuum coincide with the function one and the supersymmetric Fock

space is symmetric (note that following our reasoning all supersymmetric Fock spaces must
be symmetric; we expect antisymmetric Fock spaces for ghost fields).

As a second, more interesting application, we shortly describe the (supersymmetric)
Epstein–Glaser renormalization method [10] for the massive, interactive supersymmetric
Wess–Zumino model. The Epstein–Glaser method, called also causal perturbation theory,
is a renormalization method equivalent to the difficult BPHZ renormalization. Its main input
is causality in local quantum field theory. It is the only perturbative approach in which
renormalization is explored rigorously at the operator level and in which unitarity of the
scattering operator is proved (at the level of formal power series). The mathematical tools of
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the method are the free field (non-interacting) Hilbert space and distribution theory. It works
well for massive theories whereas in the massless case some problems with the adiabatic limit
appear which can be traced back to difficulties of defining the S-matrix and asymptotic states
in this case. It is clear that the present paper offers the tools for performing the supersymmetric
causal perturbation theory for the massive interactive Wess–Zumino model because it gives the
free Hilbet space structure in which this operator method has to be developed. A first result is a
new proof of renormalizability of the massive Wess–Zumino model with (�3 +�̄3)-interaction
[11] including unitarity of the scattering operator.

A non-interacting quantum (free) system consisting of a chiral/antichiral and a (massive)
vector part is characterized by the positive definite operator in the standard Hilbert–Krein
space (remember T = −8�PT = DαD̄2Dα = D̄α̇D2Dα̇)


1

16 D̄2D2 m
4 D̄2 0

m
4 D2 1

16D2D̄2 0

0 0 1
8T


 K0. (3.6)

Other applications include a supersymmetric Källen–Lehmann representation for interacting
Lorentz-scalar supersymmetric quantum fields [11].

Concerning the applications of the present paper one should mention that at the free
field level we succeeded to uncover the Hilbert–Krein structure of both massive and massless
theories. In the massless case this structure was obtained by restricting the set of allowed test
functions, a method which is reminiscent of the Gupta–Bleuler quantization, as was explained
in sections 2 and 3. As far as interacting fields are concerned we have strong indications
[11] that the operator approach of the causal perturbation theory (Epstein–Glaser method)
works well in the massive case whereas massless fields raise problems of similar nature as
in the usual quantum field theory; problems which are related to infrared divergences and
to the fact that the S-matrix and the asymptotic states are not well defined. Nevertheless,
the case of the supersymmetric Abelian gauge theory seems to be still tractable by means of
free ghost fields which were already introduced in [11] (for the usual case see [12]). In the
non-Abelian case in which ghosts are no longer free the situation seems to be more complicated.

Before ending let us make two remarks. The first concerns the perspective of the present
work. We succeeded to uncover the inherent Hilbert–Krein structure of the N = 1 superspace.
It means that the formal decomposition of supersymmetric functions into chiral, antichiral and
transversal components, which was common tool from the first days of superspace, was turned
here into what we call the Hilbert–Krein structure of the N = 1 superspace or the standard
supersymmetric Hilbert–Krein space. It shows that positivity (and as such unitarity) requires
the subtraction of the transversal part instead of its addition as this might be suggested by the
above-mentioned formal decomposition. Problems with the d’alembertian in the denominator
of the projections Pi, i = c, a, T have been discussed. The natural way to avoid singularities
is to impose some restrictions on the (test) functions. There are other applications in sight to
which we hope to come to (for some first modest steps see [11]).

The second remark is of a technical nature. We worked in the frame of the van der Waerden
calculus using Weyl spinors. This is very rewarding from the point of view of computations
in supersymmetry but is not totally satisfactory from the rigorous point of view. Indeed, the
components of the Weyl spinors as coefficient functions for our supersymmetric (test) functions
are supposed to anticommute and this is unpleasant when tracing back the supersymmetric
integrals to usual L2-integrals. Of course this is not a problem. A reformulation of the results
using anticommuting Grassmann variables but commuting fermionic components is possible
[11]. The net results remain unchanged as they should be.
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